

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

2. REPORT TYPE

3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION REPORT
 NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

 11. SPONSOR/MONITOR’S REPORT
 NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

17. LIMITATION
OF ABSTRACT

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON

a. REPORT

b. ABSTRACT

c. THIS PAGE

19b. TELEPHONE NUMBER (include area
code)

 Standard Form 298 (Re . 8-98) v
Prescribed by ANSI Std. Z39.18

01-17-2012 Final 4/1/08 – 11/30/10

Bridging the Gap Between Theory and Practice: Structure and
Randomization in Large Scale Combinatorial Search FA9550-08-1-0196

Carla P. Gomes

Cornell University
Office of Sponsored Programs
373 Pine Tree Rd.
Ithaca, NY 14850-2820

Air Force Office of Scientific Research
875 N. Randolph St. Room 3112
Arlington, VA 22203

AFRL-OSR-VA-TR-2012-0868

Approved for public release

This research effort focused on three core research challenges: (1) How to explain the gap between formal analysis and practical performance for
combinatorial search; (2) How to characterize and capture hidden tractable structure in real-world problems; and, (3) How to further boost
combinatorial search methods for real-world problems. A series of advanced formal models for predicting the runtime of combinatorial search
methods were developed. Models of runtime distributions of search methods capturing exponential and power law (heavy-tailed) regimes for both
complete and incomplete randomized search methods were introduced, together with a generative model that generates search trees with any
pre-defined degree of heavy-tailedness. New methods for the efficient computation of the number solution clusters and their marginal distributions
were developed. The notion of “backdoor sets,” – a measure that characterizes hidden problem structure – was extended to encompass
combinatorial optimization problems as well as learning during search, thereby providing novel insights into the connection between the hidden
structure of optimization problems and the surprising efficiency of today’s optimization engines. A novel Markov Chain Monte Carlo sampling strategy,
inspired by a flat histogram method from statistical physics, was developed to compute the density of states of a Boolean formula. Multi-agent
inference problems in dynamic environments were formulated into the framework of message passing algorithms and graphical models, generalizing
the standard Kalman filter to the distributed case. A new hybrid strategy for the MaxSAT problem was also proposed, combining the complementary
strength of local search and systematic search, bringing the best of both worlds in a way that is ideal for current multi-core architectures.

U U U

	
	
	
	
	

Bridging	 the	 Gap	 Between	 Theory	 and	 Practice:	
Structure	 and	 Randomization	 in	 Large	 Scale	

Combinatorial	 Search	
	

FA9550-08-1-0196

Grant Period:

4/1/08 – 11/30/10

PI: Carla P. Gomes
gomes@cs.cornell.edu

Department of Computer Science

Cornell University

	
	

	
Final	 Report	

Abstract

This research effort focused on three core research challenges: (1) How to explain the gap
between formal analysis and practical performance for combinatorial search; (2) How to
characterize and capture hidden tractable structure in real-world problems; and, (3) How
to further boost combinatorial search methods for real-world problems. Predicting the
runtime of combinatorial search methods is a notoriously hard problem due to
tremendous variations in runtime observed when solving practical problem instances. A
series of advanced formal models for predicting the runtime of combinatorial search
methods was developed. Models of runtime distributions of search methods capturing
exponential and power law (heavy-tailed) regimes for both complete and incomplete
randomized search methods were introduced, together with a generative model that
generates search trees with any pre-defined degree of heavy-tailedness. In order to better
understand and model solution spaces of combinatorial problems, new methods for the
efficient computation of the number solution clusters and their marginal distributions
were developed. These methods can effectively handle practical problem instances with
tens of thousands of variables, containing solution clusters with sizes ranging over many
orders of magnitude. Reasoning based on such clusters has been the key component of
highly successful combinatorial search methods proposed recently. The notion of
“backdoor sets,” --- a measure that characterizes hidden problem structure --- was
extended to encompass combinatorial optimization problems as well as learning during
search, thereby providing novel insights into the connection between hidden structure of
optimization problems and the surprising efficiency of today’s optimization engines.
Probabilistic reasoning techniques based on message passing, namely belief propagation
and survey propagation, were analyzed in the context of combinatorial problems in the
Boolean satisfiability domain, resulting in the first detailed study of the evolution of these
search methods over time as well as the utilization of these techniques to provide
statistical estimates on key properties of the solution space. The problem of computing
the density of states of a Boolean formula, which is a generalization of Satisfiability
Testing, MAX-SAT, and model counting, was also studied and a novel Markov Chain
Monte Carlo sampling strategy, inspired by a flat histogram method from statistical
physics, was developed. The new sampling method provides novel insights into
combinatorial search spaces that lie far beyond the reach of previous techniques. Multi-
agent inference problems in dynamic environments were formulated into the framework
of message passing algorithms and graphical models, generalizing to the distributed case
of the Kalman filter. A new hybrid strategy for optimizing the MaxSAT problem was
proposed, combining the complementary strength of local search and systematic search,
bringing the best of both worlds in a way that is ideal for current multi-core architectures.

	

1. Introduction

In the last decade we have witnessed tremendous progress in the design and development
of search algorithms for solving combinatorial problems. For example, consider progress
in the complete or exact backtrack-style methods for constraint satisfaction problems
(CSPs), and in particular Boolean satisfiability (SAT) problems. In the early 1990s we
could only solve formulas with around 100 variables and 1,000 clauses, whereas current
state-of-the-art complete Davis-Putnam- Logemann-Loveland (DPLL) based SAT solvers
can now handle much larger real-world instances, with over 1,000,000 variables and over
5,000,000 constraints. We have witnessed similar progress in the area of Integer
Programming. Current complete state-of-the-art solvers for combinatorial problems seem
to defy the theoretical worst-case results for solving real-world instances of hard
computational problems.

The research covered under this grant focused on three key research questions: (1) How
to explain the performance gap between theory and practice for combinatorial problems.
(2) How to characterize and capture hidden tractable structure in real-world problems. (3)
How to further boost combinatorial search methods for real-world problems.

Our work brings together techniques from constraint programming, mathematical
programming, and satisfiability in a symbiotic way to address the three research
questions. In order to evaluate the different approaches and methods, we considered a
range of real-world benchmark problems from hardware and software verification to the
design of experimental experiments, as well as more abstract problem domains such as
combinatorial design, random constraint satisfaction problems (CSP), and random
satisfiability (SAT).

In the next sections we highlight our research accomplishments during the period of the
grant which relate to the research questions and themes identified above. In Section 2 we
describe our research on randomized search procedures and runtime distributions of
search procedures. Section 3 describes methods for counting and sampling solutions of
combinatorial problems. Section 4 studies the problem of uncovering so-called hidden
structure in combinatorial problems. Section 5 describes methods for over-constrained
problems and Section 6 presents methods for inference for dynamic processes.

2. Randomization and runtime distributions of search methods

Several factors have contributed to the tremendous progress that we have observed in the
design and development of new algorithmic techniques and solvers for combinatorial
problems, in addition to the increase in computational power. In particular, these factors
include more sophisticated data-structures, non-chronological backtracking, fast pruning
and propagation methods, nogood (or clause) learning, combination of branching and
cuts, and more recently randomization and restarts. See e.g., [9], for background
literature.

Randomization has greatly extended our ability to solve hard computational problems. In
general, however, we think of randomization in the context of local search. While local
search methods have proven to be very powerful, in some situations they cannot supplant
complete or exact methods due to their inherent limitation: local search methods cannot
prove inconsistency or optimality. Surprisingly, randomization and restarts have also
been shown quite effective for complete backtrack-style search methods. In fact,
randomization and restarts are now an integral part of most state-of-the-art complete SAT
and CSP solvers.

The discovery of the effectiveness of randomization and restart strategies in complete or
exact search methods was made in the context of the study of the runtime distributions of
backtrack-style algorithms. For a long time researchers had observed that the
performance of backtrack-style search methods can vary dramatically depending on the
way one selects the next variable to branch on (the “variable selection heuristic”) and on
what order the possible values are assigned to a variable (the “value selection heuristic”).
In fact, quite often the branching heuristics provide incorrect search guidance, forcing the
procedure to explore large sub-trees of the search space that do not contain any solution.
As a consequence, backtrack-search methods exhibit a large variance in performance. For
example, we see significant differences on runs of different heuristics, runs on different
problem instances, and, for randomized backtrack-search methods, significant differences
on runs with different random seeds. The inherent exponential nature of the search
process appears to magnify the un-predictability of search procedures. In fact, it is not
uncommon to observe a backtrack-search procedure “hang” on a given instance, whereas
a different heuristic, or even just another randomized run, solves the instance quickly.

	

Figure	 1	 The	 progression	 from	 heavy-‐tailed	 regime	 to	 non-‐heavy-‐tailed	 regime.	 Log–log	 plot	 of	 the	
survival	 functions	 of	 the	 runtime	 distributions	 of	 a	 backtrack-‐search	 algorithm	 on	 constraint	
satisfaction	 instances	 of	 model	 E	 (17,	 8,	 p),	 for	 different	 values	 of	 p	 [9].	

A. Carvalho et al. / Computers & Operations Research 36 (2009) 2376 -- 2386 2379

Fig. 1. Computational complexity and phase transition curves. Model E 〈17, 8,p〉.

0.0001

0.001

0.01

0.1

1

1 10 100 1000 10000 100000 1e+06 1e+07

Su
rv

iv
al

 fu
nc

tio
n

(1
-C

D
F)

Number of backtracks

model E <17, 8, p> BT Random

p = 0.05

p = 0.24

Fig. 2. The progression from heavy-tailed regime to non-heavy-tailed regime. Log–log plot of the survival functions of the runtime distributions of a backtrack-search
algorithm on instances of model E 〈17, 8,p〉, for different values of p [23].

Let {!i} denote the arrival times of a Poisson process with rate 1
and let Ri be independent and identically distributed random vari-
ables, independent of the sequence {!i}. If the series

∞∑

i=1

!−1/"
i Ri (6)

converges a.s., then it converges to a strictly "-stable random vari-
able [30]. This result shows that an "-stable with 0 <" <2 can be rep-
resented as a convergent sum of random variables involving arrival
times of a Poisson process.

For our simulations, in Eq. (6), we use a sum to n, with !i i.i.d.
Gamma(i, 1), i integer and Ri i.i.d. N(0, 1). Using N = 10, 000 replica-
tions in the simulations, combining the number of random variables
to be added (n) and tail index (") we obtain a result as in Fig. 3.
From Fig. 3 we see that when n is low, the log–log plot of the sur-
vival function exhibits linear behavior, an indication of heavy-tailed

behavior. Increasing the number of random variables i (n ↑) causes
the median of the distribution to increase and the heavy-tailed
regime is replaced by a fat-tailed regime, similar to the behavior
observed in Fig. 2.

Despite the fact that there is a good theoretical justification for
this approach, we were not able to obtain a good fit to our empirical
data. The understanding of the semantics of this model involving
sums of Poisson arrivals and its application to capture the different
statistical regimes of backtrack-search algorithms across different
constrainedness regions of random CSP instances requires further
research.

3.2. Mixtures of "-stable distributions

Our most successful approach for modeling the different sta-
tistical regimes observed in backtrack search across different

Although researchers had been well aware of the high variance of backtrack-search
algorithms, the discovery of the so-called heavy-tailed nature of the runtime distributions
of backtrack-search methods was somehow surprising and even counter-intuitive. Heavy-
tailed distributions exhibit power-law decay of the tails. That is why heavy-tailed
distributions are also referred to as power-laws. (See Figure 1). The power-law decay of
the tail causes it to be heavy, and therefore some of the moments do not converge —
heavy-tailed distributions are therefore characterized by infinite moments, e.g., they can
have infinite mean, or infinite variance, etc. This is in contrast with non-heavy-tailed
distributions characterized by exponential decay. Related to heavy-tailedness is fat-
tailedness. The notion of fat-tailedness may be introduced using the concept of kurtosis,
and comparing the kurtosis of a given distribution with the kurtosis of the standard
normal distribution. The kurtosis of the standard normal distribution is 3. A distribution
with a kurtosis larger than 3 is fat-tailed or leptokurtic. Like heavy-tailed distributions,
fat-tailed distributions have long tails, with a considerable mass of probability
concentrated in the tails. Nevertheless, the tails of fat-tailed distributions are lighter than
heavy-tailed distributions. Therefore, contrarily to heavy-tailed distributions, all the
moments of fat-tailed distributions are finite. Examples of distributions that are
characterized by fat-tails are the exponential distribution and the lognormal distribution.
Interestingly, in the context of search, heavy-tails have been observed not only in
aggregated runtime distributions of backtrack-search methods, when considering a
collection of instances of the same class (e.g., random binary CSP instances generated
with the same parameter space), but also when running a randomized backtrack-search
procedure on the same instance several times, in which the randomization is only used to
break ties in the variable and/or value selection.

The understanding of the fat-tailed and heavy-tailed nature of the distributions underlying
backtrack-search methods has led to the design of new search strategies, in particular
restart strategies for complete backtrack-search methods. For example, we have shown
how randomized restarts of search procedures can dramatically reduce the variance in the
search behavior. In fact, we demonstrated that a search strategy with restarts provably
eliminates heavy tails. Interestingly, Beame et al. showed that clause learning combined
with restarts, as used by current-state-of-the-art SAT solvers, corresponds to a proof
system exponentially more powerful than that of DPLL.

While heavy-tailed behavior has been observed in backtrack-search methods, it is clear
that it does not occur in all problem instances. In fact, backtrack-style algorithms exhibit
dramatically different statistical regimes across the different constrainedness regions of
random CSP models—a heavy-tailed regime in the under-constrained area is replaced by
a non-heavy-tail regime as one moves towards the phase transition.

2.1 A	 generative	 power-‐law	 search	 tree	 model	 for	 complete	 or	 exact	 methods	 	

(See [9] for a detailed description of this work and background literature.)

A deep understanding of heavy-tailed phenomena involves formal generative models. In

fact, the search for good generative models for power-law distributions is a new active
research area across different domains. For example, the so-called model of preferential
attachment that generates power-law degree distributions for random graphs is an
abstraction for modeling how social networks or the Internet lead to heavy-tailed
behavior.

The generation of power-law distributions for backtrack search is also quite challenging,
especially if one attempts to capture the full behavior of backtrack search. A compromise
is to produce more abstract models, such as the model proposed by Chen et al. In such a
model, only high level branching decisions leading to “subtrees of the search space” are
modeled. Branching decisions within a given “subtree” are not modeled. Despite its level
of abstraction, the model provided interesting insights into search algorithms. For
example, it led to the so-called notion of backdoor set, a set of critical variables that
captures the combinatorics of the problem with respect to the propagation procedure of
the solver: once values are assigned to the backdoor set, the remaining problem is solved
by propagation (see also section 3).

Our research contribution to this topic during this grant period was twofold. We showed
how the different regimes observed in backtrack-search methods across different
constrainedness regions of random CSP models can be captured by a mixture of the so-
called stable distributions. Stable distributions capture a range of heavy-tailed and non-
heavy-tailed distributions. We also developed a generative search tree model whose
distribution of the number of nodes visited during search is formally heavy-tailed. Even
though our model is an abstraction of backtrack search, it is more realistic than previous
models. In particular, while the model by Chen et al. only considers high level branching
decisions leading to “subtrees of the search space”, more specifically, subtrees of size 20
, 21 , 22 , . . . , 2n nodes, our model considers finer grained branching decisions, at every
node. Furthermore, it allows us to generate search trees with any degree of heavy-
tailedness. Our model also captures a key aspect of heavy-tailed behavior in backtrack
search—the longer the run the more unlikely it is for the search procedure to stop. This
overall behavior is achieved by the fact that the probability of going down the search tree
decreases exponentially, combined with the fact that, as one goes down the search tree,
the probability of making a “wrong decision” – i.e., not picking a terminal node that
corresponds to a solution or that leads to a proof of unsatisfiability – given all the “wrong
decisions” so far, increases. These two opposite factors – an overall exponential decrease
in going down the search tree and an exponential increase in search space as we go down
the search tree – are key to the generation of power-law decay. Our model captures
binary trees as well as other tree shapes that more closely resemble the search trees
produced in combinatorial search. We should also point out that the nodes in our model
capture different decision points, such as picking the next variable to branch on, or
picking a value to assign to a variable, or picking a backtracking point, or more generally
picking or not picking the “right terminal node”. Therefore, our model can be viewed as
an abstraction for different variants of backtrack-search models (See Figure 2).

	

Figure	 2	 Different	 variants	 of	 search	 trees	 with	 power	 law	 decay	 (alpha=1)

	

Figure	 3	 –	 Log–log	 plot	 of	 survival	 functions	 of	 stable	 mixtures	 (solid	 line)	 and	 empirical	 runtime	
distributions	 of	 a	 backtrack-‐search	 algorithm	 on	 instances	 of	 Model	 E,	 p	 =	 0.05,	 0.11,	 and	 0.24	 (dashed	
line).	

We also showed how the different statistical regimes observed in the runtime
distributions of backtrack-style algorithms on random CSP instances can be captured by a
mixture of stable distributions, in which one of the components is heavy-tailed and the
other component is the normal distribution (See Figure 3). This mixture provides
interesting insights: despite the relative high weight of the normal distribution across the
different regions, the extremely low alpha values of the heavy-tailed stable produce a
heavy-tailed regime; as alpha is increased, the heavy-tailed component no longer
outweighs the normal component, leading to exponentially decaying tails. From an
algorithmic point of view the heavy-tailed regime corresponds to having an algorithm
that has good chances of finding solutions with short runs, given the fact that this regime
is in the under- or medium-constrained area. However, now and then it makes a sequence
of mistakes that leads to extremely long tails, therefore heavy-tails. As the instances
become harder, the heavy-tailed regime is replaced by a non-heavy-tailed regime in
which the normal distribution dominates, with a corresponding increase in alpha. In this

A. Carvalho et al. / Computers & Operations Research 36 (2009) 2376 -- 2386 2385

1
2

1
2

1
3

2
3

1
4

3
4

(...)terminal nodes

non-terminal nodes

1
2

1
2

1
3 1

3

1
3

1
4 1

4
1
4

1
4

1
4 1

4
1
4

1
4

(...)

1
2 1

4

1
4

1
3

1
3

1
3

1
3

2
3

1
4

2
4

1
4

1
4

3
4

2
4

1
4

1
4

(...)

Fig. 10. Different variants of search trees with power-law decay with ! = 1.

100 101 102 103 104
10−5

10−4

10−3

10−2

10−1

100

1−
C

D
F

n = 10
n = 100
n = 1000
n = 10000
n = 100000
n = 1000000

Fig. 11. Tails obtained with our generative model for ! = 1 and different values of n.

in which one of the components is heavy-tailed and the other com-
ponent is the normal distribution. This mixture provides interesting
insights: despite the relative high weight of the normal distribu-
tion across the different regions, the extremely low ! values of the
heavy-tailed stable produce a heavy-tailed regime; as ! is increased,
the heavy-tailed component no longer outweighs the normal com-
ponent, leading to exponentially decaying tails. From an algorithmic
point of view the heavy-tailed regime corresponds to having an
algorithm that has good chances of finding solutions with short
runs, given the fact that this regime is in the under or medium con-
strained area, but now and then it makes a sequence of mistakes that
leads to extremely long tails, therefore heavy-tails. As the instances
become harder, the heavy-tailed regime is replaced by a non-heavy-
tailed regime in which the normal distribution dominates, with
corresponding increase in ". In this region the instances become
inherently harder, all the runs become homogeneously long, the
algorithm does not have a chance of producing short runs, therefore
the dramatic decrease in the ranges of the runtime distributions
and the fast drop of the tails.

In summary, we introduced a generative search tree model
that captures key aspects of heavy-tailed behavior in combinatorial
search. Furthermore our model allows us to generate search trees
with any degree of heavy-tailedness. We also showed how a mix-
ture of stable distributions captures the statistical regimes observed
in runtime distributions of backtrack-style algorithms across differ-
ent constrainedness regions of random CSP instances. We hope our
models will lead to further improvements in the design of search
methods.

Appendix A.

Let us denote the sequence of probabilities for each non-terminal
node of level n by Un and by Truncn(Un) the corresponding trun-
cated sequence with n decimal digits. Our goal is to show that using
Truncn(Un) instead of Un leads to the same power-law decay for the
distribution of X, the number of visited nodes during the search.

Lemma. If Un → 1, Un >0 and Truncn(Un + 1)!Truncn(Un) then
Truncn/Un → 1.

Proof. Let us start to note that

Truncn(Un)
Un

= 1 − Un − Truncn(Un)
Un

"1

Due the nature of truncation, Un −Truncn(Un)"10−n. Therefore,

1 − 10−n

Un
"1 − Un − Truncn(Un)

Un
"1

Since

lim

(

1 − 10−n

Un

)

= 1 − lim(10−n)
lim(Un)

= 1

then

Truncn(Un)
Un

→ 1 #

A. Carvalho et al. / Computers & Operations Research 36 (2009) 2376 -- 2386 2381

10−4 10−2 100 102 104 106 108
10−5

10−4

10−3

10−2

10−1

100

number of backtracks

1−
cd

f

Fig. 5. Log–log plot of survival functions of stable mixtures (solid line) and empirical runtime distributions of a backtrack-search algorithm on instances of Model E, p=0.05,
0.11, and 0.24 (dashed line).

distributions, where the heavy-tails disappear. In this region, the
normal distribution dominates the mixture (high values of ! and "
for the heavy-tailed stable component), causing the tails to drop fast.
Again, from an algorithmic point of view this is quite insightful: in
this region, the instances become inherently hard for the backtrack-
search algorithm, all the runs become homogeneously long, the
algorithm has no chance of producing short runs, therefore the vari-
ance of the backtrack search algorithm decreases and the tails of the
survival functions decay rapidly.

In order to provide further evidence of the suitability of ourmodel
of mixtures of distributions, we evaluated the “goodness of fit” for
all the instances of Model E discussed above. We generated the
distributions using the well-tested International Mathematics and
Statistics Library [31,32]. We then use an iterative procedure as de-
scribed, e.g., in [33], to compare the empirical data against the fitted
theoretical mixed distribution using the Kolmogorov–Smirnov (K–S)
goodness of fit test. Note that we have to use such an iterative pro-
cedure given that we are using mixtures of distributions and that
there is no closed form for the stable distributions with the parame-
ters required in our model (see Section 2). The two-sample K–S test
is one of the most useful and general non-parametric methods for
these purposes [34]. As discussed before, given that we are inter-
ested in studying the tail behavior of the distributions, we measure
the quality of the fit only taking into account tail data. For the sake
of uniformity, we used 5% of the tail (500 observations) in all cases.
Table 2 shows the results for the K–S statistics obtained for different
instances of Model E. We observe high “p” values, which means the
null hypothesis of equality of distributions is not rejected. We can
thus assume our real data series are well modeled by the fitted mix-
ture of distributions. In Fig. 5 we plot the empirical data and the fitted
distribution for p= 0.05, 0.11, 0.18 and 0.24. The near overlap of the
empirical curves and corresponding fitted distributions is striking.
Our model is able to reproduce the inflexions of the plots with high
accuracy.

As a final remark we would like to point out that the same
qualitative behavior is observed when considering different variants
of backtrack-search methods. The more sophisticated the method
(e.g., nogood learning, strong pruning and propagation), the nar-
rower the heavy-tailed region but still, as the instances become

too hard, the heavy-tailed regime is replaced by a non-heavy-tailed
regime.

4. Generative power-law search tree model

In this section we present an abstract generative search tree
model that produces power-laws. In order to motivate the topic we
start by considering two typical examples of exponential decay.

4.1. Exponential decay

We start by considering a full binary tree with N levels below
the root node (see Fig. 6, left panel), therefore a total of 2N+1 − 1
nodes. Let us assume we only have one terminal node (i.e., a solution
node or a node that leads to a proof of unsatisfiability) and that it
can be any node of the tree. We consider a search algorithm that at
each branching decision picks a node with probability 1

2 , until the
terminal node is found. We denote by X the total number of visited
nodes in the tree. In this model, the probability that the search stops
after n choices is 2−n and

P(X >n) = 2−n → 0 as n → ∞,

which means that the tail of the distribution has exponential
decay.

Now, with the same algorithm, let us consider a different binary
search tree. In each level there are two equiprobable nodes, one of
which is a terminal node, i.e., one in which the search terminates (a
solution is found or the algorithm proves that there is no solution).
(See Fig. 6, right panel.) In this case, the probability that the search
stops after n choices is also 2−n and the tail also has exponential
decay, that is, P(X >n) → 0 very quickly.

In order for us to have a model that exhibits hyperbolic or power-
law tail decay, the probability of terminal nodes, as we go down the
tree, must decrease, but slowly. In the following sections we present
different generative models of power-law decay for the number of
nodes visited during search.

region the instances become inherently harder, all the runs become homogeneously long,
and the algorithm does not have a chance of producing short runs. Therefore, there is a
dramatic decrease in the ranges of the runtime distributions and the fast drop of the tails.

In summary, in this work we introduced a generative search tree model that captures key
aspects of heavy-tailed behavior in combinatorial search. Furthermore, our model allows
us to generate search trees with any degree of heavy-tailedness. We also showed how a
mixture of stable distributions captures the statistical regimes observed in runtime
distributions of backtrack-style algorithms across different constrainedness regions of
random CSP instances. We hope our models will provide further insights into the design
of new algorithmic strategies and lead to further improvements in the design of search
methods.

2.2 	 Optimal	 Noise	 and	 Runtime	 Distributions	 in	 Local	 Search	 	
	

(See [5] for a detailed description of this work and background literature.)

Designing, understanding, and improving, local search methods for constraint reasoning,
and in particular for Boolean satisfiability (SAT), has been the focus of hundreds of
research papers since the 1990s and even of earlier papers. For SAT, techniques such as
greedy local search, tabu search, solution guided search, focused random walk, and
reactive or adaptive search have led to much success. Specifically, Walksat stands out as
one of the initial solvers that introduced many of the key ideas in use today and, is still
competitive with the state of the art.

Many attempts have been made to understand the behavior of local search methods in
terms of local minima, exploring “plateaus”, the exploration vs. exploitation tradeoff, etc.
However our formal understanding is limited mostly to relatively simple variants of local
search, such as a pure greedy search, a pure random walk, or a combination of the two.
This is not surprising as the techniques employed by Walksat and other state-of-the-art
local search solvers are too complex to allow a formal analysis in terms of, for example, a
traditional Markov Chain. At the same time, there is a wealth of information available
from observations of the behavior of local search methods on a variety of domains, most
notably for random 3-SAT. There is either formal or anecdotal evidence of various
features, such as Walksat, scaling linearly at optimal noise but exponentially at sub-
optimal noise, and there are suggestions that the runtime distribution of local search on a
single random instance has an exponentially decaying tail. Our work provides convincing
empirical evidence in favor of, or even against, such anecdotal insights and observations.
We studied the behavior of Walksat on hard, large, random 3-CNF formulas and
investigated its time complexity in relation to the clause-to-variable ratio α and the
(static) noise level – both of which Walksat is highly sensitive to. Unlike previous
studies, our conclusions are based on very large formulas and are thus free of “small N
effects”. This might explain the difference between our conclusions and those of, e.g.,
Hoos and Stutzle.

While many new local search SAT solvers are based on “adaptive” or “dynamic” noise,

these solvers are apparently unable to settle on the optimal noise setting for hard random
3-CNF formulas, doing much worse than optimal static noise. E.g., we found that the
SAT Competition 2009 winners in the satisfiable Random category, TNM and
gnovelty+2, were slower than Walksat at optimal noise by a factor of roughly 4x for
N=10,000 variable formulas with α = 4.2, 13x for N=20,000, 31x for N=30,000, 54x for
N=40,000, and 785x for N=50,000. This also shows that, unlike Walksat, these adaptive
noise solvers scale super-linearly in this domain, justifying the interest in our study of
static noise.

	

Figure	 4	 Log–log	 plot	 of	 survival	 functions	 of	 runtime	 (number	 of	 flips)	 distributions	 of	 the	 Walksat	
procedure	 on	 a	 large	 SAT	 instance	 for	 different	 noise	 levels.	 	 (Left	 panel)	 Non-‐heavy	 tailed	 regime	 for	
high	 noise	 level.	 (Rigth	 panel)	 	 Heavy-‐tailed	 regime	 for	 low	 noise	 level.	

Our work showed a surprisingly simple step-linear analytical fit for the value of the
optimal noise as a function of α, and an equally simple analytical expression for the mean
running time of Walksat (measured as the number of flips) at this optimal noise. This fit
as well as our data exhibit linear scaling with N for α close to the phase transition region
for 3-SAT. Second, we studied the runtime distribution of Walksat on single instances
and found the first clear evidence of power-law decay in the probability of failure in T
flips in the tail of the distribution. Power-law decays and heavy-tailed runtime
distributions have been one of the key observations for DPLL-style systematic search
solvers and have led to methodologies such as rapid restarts and algorithm portfolios.
This phenomenon, however, is usually not associated with local search. We showed that
after a (relatively long) “flat” region, the probability of failure decays exponentially in the
high noise regime but as a power-law in the low noise regime. Third, we showed that as
Walksat proceeds, the number of unsatisfied clauses exhibits an interesting gradual decay
that happens only at near-optimal noise. The kind of empirical study pursued here
requires a significant computational power (e.g., 100,000 runs for some low noise levels
to observe a clear trend). We used Yahoo!’s Apache Hadoop based M45 cloud computing
platform with the net computational effort being equivalent to around 14 years of single
CPU time.

2.3 Markov	 Chain	 Model	 Capturing	 Exponential	 and	 Power-‐Law	 Decay	

(See [5] for a detailed description of this work and background literature.)

We developed a preliminary Markov Chain model capturing, e.g., exponential scaling
with N and power-law decay at low noise. A model that captures such features and is yet
simple to describe and simulate can be a very useful tool for understanding and exploiting
the tradeoffs inherent in local search.

The model has two parts. The first part is a linear MC with states corresponding to truth
assignments that satisfy the same fraction of clauses of a formula F, with the leftmost
state encapsulating all solutions. Second, hanging from each state in the top chain is a
“trap gadget”, which captures the behavior of Walksat when it “gets lost” exploring parts
of the search space without any solutions, leading to the heavy-tail.

3. Counting and problem structure
	
3.1 Computing	 the	 density	 of	 states	 of	 a	 Boolean	 formula	

(See [1 and 3] for a detailed description of this work and background literature.)	

As mentioned above, Boolean satisfiability (SAT) solvers have been successfully applied
to a wide range of problems, ranging from automated planning to hardware and software
verification. In all these applications, the original problem is encoded into a Boolean
formula and the task is that of deciding whether it is satisfiable or not.

Given the tremendous success of SAT solvers, a lot of attention has been directed toward
extending this technology to the model counting problem, that is the problem of
computing the number of distinct satisfying assignments for a given propositional
formula. This task is also very important because of its wide range of applications. For
example, several probabilistic inference problems in graphical models such as Bayesian
inference can be effectively translated into model counting. Another very active line of
research is devoted to the study of the optimization version of SAT, namely the
maximum satisfiability problem (MAX-SAT), where the goal is to find a truth assignment
that satisfies the maximum possible number of constraints. MAX-SAT is important
because it can be effectively used to solve many fundamental graph theoretic problems
such as MAX-CUT, MAX-CLIQUE, and Minimum Vertex Cover, and because it has
direct applications in a wide range of domains such as routing problems and expert-
systems.

In our work we considered the problem of computing the density of states of a Boolean
formula, which is a generalization of Satisfiability Testing, MAX-SAT and model
counting. Consider a combinatorial state space S, such as the set of all possible truth
assignments to N Boolean variables. Given a partition of S into subsets, we considered
the problem of estimating the size of all the subsets in the partition. This problem is also
known as computing the density of states. For instance, given a Boolean formula with m
constraints, we can partition the set of all possible truth assignments according to the

number of constraints they violate. In this case, the density of states gives the size of all

	

Figure	 5	 Density	 of	 states	 (DOS)	 for several large formulas from MaxSAT-2009 and SATLib. E is the energy
or number of unsatisfied clauses in the formula. N(E) is the number of models with E unsatisfied clauses.

100 200 300 400 500 600
E

5

10

15

20

25
Log !n!E""

(a) Log-Density for a Clique problem
brock400 2.clq.cnf from MaxSAT-2009.

50 100 150 200 250 300
E

20

40

60

80

Log !n!E""

(b) Log-Density for a Spin Glass prob-
lem spinglass5 10.pm3.cnf from MaxSAT-
2009. Notice there are no configurations
with an even number of unsatisfied clauses.

200 400 600 800
E

5

10

15

20

25

Log !n!E""

(c) Log-Density for a Clique problem
MANN a27.clq.cnf from MaxSAT-2009.
No solver presented at MAXSAT09 could
solve this instance (within 30 minutes).

500 1000 1500 2000 2500 3000
E

50

100

150

200

250

300

Log !n!E""

(d) Log-Density for the Logistic problem
bw large.a.cnf from SATLib.

100 200 300 400 500
E

10

20

30

40

50

60

70

Log !n!E""

(e) Log-Density for the Pigeon Hole prob-
lem instance hole10.cnf from SATLib.

500 1000 1500 2000 2500 3000
E

50

100

150

200

250

300

Log !n!E""

(f) Log-Density for the Morphed Graph
Colouring problem sw100-1.cnf from
SATLib. .

Fig. 5. DOS for several large formulas from MaxSAT-2009 and SATLib ([16]).

the subsets defined by the number of violated constraints, i.e., the number of truth
assignments that violate exactly k constraints, for 0 ≤ k ≤ m. Therefore, the problem of
computing the density of states is a generalization of SAT, MAX-SAT and model
counting

The additional information provided by the full density of states distribution is especially
useful in the context of probabilistic models defined through combinatorial constraints
such as Markov Logic Theories. In fact, the description of the state space can be used to
efficiently compute not only the normalization constant of the underlying probabilistic
model (also known as the partition function), but also its parameterized version. This
level of abstraction is a fundamental advantage for learning methods because it allows us
to reason about the system more abstractly. For example, in the case of a Markov Logic
Theory, we can parameterize the partition function Z(w1, . . . , wK) according to the
weights w1, . . . , wK of its K first order formulas that define the theory. Upon defining an
appropriate energy function and obtaining the corresponding density of states, we can use
the information about the partition function to directly compute the model parameters that
best fit the training data.

To compute the density of states, we introduced MCMCFlatSat, a novel Markov Chain
Monte Carlo (MCMC) sampling strategy, inspired by the Wang-Landau method ([6]),
which is a flat histogram method from statistical physics. Given a combinatorial space
and an energy function, a flat histogram method is a sampling strategy based on a Markov
Chain that adaptively changes its transition probabilities until it converges to a steady
state where it spends approximately the same amount of time in states with a low density
of configurations (which are usually low energy states) as in states with a high density.
This condition leads to a flat histogram of the energy levels visited that gives name to the
method.

Technically, MCMCFlatSat is an Adaptive Markov Chain Monte Carlo method. In an
Adaptive MCMC scheme, the transition probabilities are adjusted over time in order to
achieve some optimality condition, learning the parameters while the chain runs. Even
though it is usually harder to rigorously prove convergence properties, adaptive MCMC
algorithms can significantly improve the performance over standard MCMC methods.

We conducted an extensive empirical analysis of MCMCFlatSat, demonstrating that our
method converges quickly and accurately on a broad range of structured and synthetic
instances. For instance, in the case of a logistic planning problem taken from SATLib, we
are able to obtain this very fine grained information about a huge search space of 2459
assignments in a matter of minutes. Moreover, we showed that our method is remarkably
precise, because it finds that there exists only one model (solution), but at the same time
it is able to estimate the mode of the distribution, which is roughly e300 times larger, thus

counting both the needles and the haystack at the same time. See Figure 5.

Even if computing the entire density of states is a more general and more difficult
problem than standard model counting, comparing MCMCFlatSat with model counters
still provides some useful insights. In particular, we can show that when the number of
constraints is not too big, that is, the overhead derived from computing the entire density
of states is not overwhelming, MCMCFlatSat competes against state of the art model
counters in terms of running times, and often provides more accurate estimates.

Because of the generality and the effectiveness of the flat histogram idea, we expect that
this approach will find many other applications both in counting, probabilistic inference
and learning problems.

3.2 Solution	 Clusters	 in	 Combinatorial	 Problems:	 Exact	 and	 Approximate	
Inference	 Methods	

(See [14 and 3] for a detailed description of this work and background literature.)	

Message passing algorithms, in particular Belief Propagation (BP), have been very
successful in efficiently computing interesting properties of succinctly represented large
spaces, such as joint probability distributions. Recently, these techniques have also been
applied to compute properties of discrete spaces, in particular, properties of the space of
solutions of combinatorial problems. For example, for propositional satsfiability (SAT)
and graph coloring (COL) problems, marginal probability information about the uniform
distribution over solutions (or similar combinatorial objects) has been the key ingredient
in the success of BP-like algorithms. Most notably, the survey propagation (SP)
algorithm utilizes this information to solve very large hard random instances of these
problems.

Earlier work on random ensembles of Constraint Satisfaction Problems (CSPs) has
shown that the computationally hardest instances occur near phase boundaries, where
instances go from having many globally satisfying solutions to having no solution at all
(a 'solution-focused' picture). In recent years, this picture has been redefined and it was
found that a key factor in determining the hardness of instances in terms of search
algorithm (or sampling algorithm) is the question: how are the solutions spatially
distributed within the search space? This has made the structure of the solution space in
terms of its clustering properties a key factor in determining the performance of
combinatorial search methods (a 'cluster-focused' picture).

Can BP-like algorithms be used to provide such cluster-focused information? For
example, how many clusters are there in a solution space? How big are the clusters? How
are they organized? Answers to such questions will shed further light into our
understanding of these hard combinatorial problems and lead to better algorithmic
approaches for reasoning about them, be it for finding one solution or answering queries
of probabilistic inference about the set of solutions. The study of the solution space

geometry has indeed been the focus of a number of recent papers, especially by the
statistical physics community, which has developed extensive theoretical tools to analyze
such spaces under certain structural assumptions and large size limits.

We developed a purely combinatorial method for counting the number of clusters, which
is applicable even to small size problems and can be approximated very well by message
passing techniques (part of the work presented at the NIPS-08 conference; extended work
in preparation for submission to PNAS). We proposed one of the first scalable methods
for estimating the number of clusters of solutions of satisfiabilty (SAT) and graph
coloring (COL) problems using a BP-like algorithm. While the naïve method, based on
enumeration of solutions and pairwise distances, scales to graph coloring problems with
50 or so nodes and a recently proposed local search based method provides estimates up
to a few hundred node graphs, our approach based on BP easily provided fast estimates
for graphs with 100,000 nodes.

We validated the accuracy of the approach by also providing a fairly non-trivial exact
counting method for clusters, utilizing advanced knowledge compilation techniques
(BDDs and the DNNF representation). Our approach works with the factor graph
representation of the underlying problem. We derived a 'partition function' style quantity,
denoted Z(-1), to count the number of clusters; this quantity is formally proved to be
exactly the number of clusters on 2-SAT and on 3-COL instances satisfying a certain
simple graph property, and empirically found to be very close to exact on a number of
structure and random instances. We then used the variational method to obtain BP
equations for estimating Z(-1), the accuracy of which is validated independently. Overall,
this approach provides a clear, principled method of reasoning about solution clusters of
arbitrary discrete combinatorial problems. Unlike statistical physics based approaches
such as survey propagation (SP), this approach starts with the first principles, precisely
defining what 'clusters' are in the first place. The resulting BP(-1) equations for Z(-1)
may be seen as an alternative and intuitive derivation of the much-studied SP algorithm
for k-SAT, and for k-COL it provides a finer-grained methodology for reasoning about
clusters than SP equations for that problem.

	

Figure	 6	 Pictorial	 representation	 of	 cluster	 regimes	 across	 	 different	 	 constrainedness	 regions

4. Uncovering hidden structure in combinatorial problems

[See [14 and 15] for a detailed description of this work and background literature.]	

Capturing and exploiting problem structure is key to solving large real-world
combinatorial problems. A very fruitful and prolific line of research that has been
pursued in the study of combinatorial problems is the identification of various structural
properties of instances that lead to efficient algorithms. Ideally, one prefers structural
properties that are “easily” identifiable, such as topological properties of the underlying
constraint graph. As an example, the degree of acyclicity of a constraint graph, measured
using various graph width parameters, plays an important role with respect to the
identification of tractable instances. Other useful structural properties consider the nature
of the constraints, such as their so-called functionality, monotonicity, and row convexity.

Another approach for studying the nature of combinatorial problems of interest focuses
on the role of hidden structure. One example of such hidden structure is a backdoor set—
a set of variables B such that once they are instantiated, the remaining problem simplifies
to a tractable class (but not necessarily syntactically defined). The notion of
simplification or tractability in the definition of backdoor sets is captured by a
polynomial time algorithm or sub-solver that, given a formula, either correctly decides its
satisfiability or rejects it. This easily captures the behavior of the propagation procedures
of the standard DPLL algorithm for backtrack search such as unit propagation and pure
literal elimination. Note that the problem may become simple due to different reasons for
different value assignments to the backdoor variables. Moreover, the actual semantics of
the constraints may play a critical role in making the problem simple w.r.t. the sub-solver
under consideration. These two aspects embedded in the notion of tractability through

Lukas Kroc, Ashish Sabharwal, Bart Selman Cornell University

Counting Solution Clusters in Graph Coloring
Problems Using Belief Propagation

= cluster of satisfying
assignments

= trap (almost satisfying)

Constraint density

One giant
cluster

Many small
clusters No solutions

Poster ID:

M48
Known facts:
� Solution space of random combinatorial

problems fractures into clusters as
constraint density (& hardness) increases

� The fastest solution technique relies on
marginal probability estimates over clusters

Our results:
� An expression to count the number

of clusters with high precision

� A message-passing scheme similar
to BP that approximates Z(-1) well

� �¦ �
�

� �
nDomExty

ye yfZ
&

& &

D
DD)(1)(#

)1(

backdoors make this kind of structure “hidden”, in contrast to other structural notions
such as bounded tree-width of the underlying constraint graph.

The understanding of backdoor sets has important practical implications. A combinatorial
problem with n variables and a backdoor set B can be solved by considering only 2|B|
variable assignments instead of all 2n variable assignments (in the worst case), thereby
yielding considerable computational savings when the backdoor set is a small subset of
the set of all n variables. Therefore, the notion of a small backdoor set succinctly
capturing the combinatorics of a problem provides a tool for analyzing and understanding
the efficiency and performance of state-of-the-art solution techniques for large-scale real-
world combinatorial problems. In addition, the demonstration of the existence of very
small backdoor sets in real-world combinatorial problems has contributed to the design of
novel search techniques by motivating the use of randomization, restarts, and algorithm
portfolios in existing solution approaches.

	

Figure	 7	 Constraint	 graph	 of	 a	 real-‐world	 instance	 from	 the	 logistics	 planning	 domain.	 The	 instance	 in	
the	 plot	 has	 843	 vars	 and	 7,301	 clauses.	 One	 backdoor	 set	 for	 this	 instance	 w.r.t.	 unit	 propagation	 has	
size	 16	 (not	 necessarily	 the	 minimum	 backdoor	 set).	 Left:	 Constraint	 graph	 of	 the	 original	 instance.	
Center:	 Constraint	 graph	 after	 setting	 5	 variables	 and	 performing	 unit	 propagation.	 Right:	 Constraint	
graph	 after	 setting	 14	 variables	 and	 performing	 unit	 propagation.	

From a practical point of view, the usefulness of backdoor sets depends on two factors: 1)
whether problems of interest indeed have small backdoor sets, and 2) whether such small
backdoor sets can be identified efficiently. In our research we compared different
backdoor variants highlighting an important tradeoff between the size of the smallest
backdoor and the computational complexity of deciding the existence of a backdoor set
of a given size. We provided both theoretical and empirical characterizations of such
tradeoffs.

We examined the notion of backdoor sets in the context of Boolean satisfiability (SAT).
Most complete search procedures for SAT are based on the Davis–Putnam–Logemann–
Loveland (DPLL) algorithm, a backtrack search procedure where one systematically
chooses the next variable to assign and then applies polynomial-time propagation
procedures (or sub-solvers) such as unit propagation and pure literal elimination to infer
as many additional assignments as possible. The original work on backdoors for SAT was
done with these kinds of polynomial-time algorithms in mind. Since then, follow-up work
has focused on backdoor sets for which the resulting simplified sub-problems belong to a
well-understood syntactically defined tractable class of conjunctive normal form (CNF)

10 Chapter 9. Exploiting Runtime Variation in Complete Solvers

Figure 9.4. Constraint graph of a real-world instance from the logistics planning domain. The

instance in the plot has 843 vars and 7,301 clauses. One backdoor set for this instance w.r.t.

unit propagation has size 16 (not necessarily the minimum backdoor set). Left: Constraint

graph of the original instance. Center: Constraint graph after setting 5 variables and perform-

ing unit propagation. Right: Constraint graph after setting 14 variables and performing unit

propagation.

ingly effective in finding small backdoors in many structured problem instances.
Figure 9.4 shows a visualization of the constraint graph of a logistics planning
problem and how this graph is drastically simplified after only a few variables
occurring in a small backdoor (found by SAT solvers) are set. In related work,
Slaney and Walsh [2001] studied the structural notion of “backbones” and De-
quen and Dubois introduced a heuristic for DPLL based solvers that exploits the
notion of backbone and outperforms other heuristics on random 3-SAT problems
[Dequen and Dubois, 2003, Dubois and Dequen, 2003].

9.2. Exploiting Runtime Variation: Randomization and Restarts

As it turns out, one of the most effective ways to address and exploit heavy-
tailed behavior is to add “restarts” to a backtracking procedure. We describe
this technique next, followed by a brief discussion of various ways to randomize
a backtrack search algorithm.

9.2.1. Restarts: Randomized and Deterministic Strategies

A restart, as the name suggests, is the process of stopping the current computation
of a SAT solver and restarting it from the beginning with a different random seed.4

For solvers employ caching techniques such as clause learning, the information
learned in one run is kept and used even after a restart, thus not letting the
computational effort spent so far go completely waste.

In the presence of heavy tailed behavior, a sequence of short runs instead
of a single long run may be a more effective use of computational resources.

4As we will see later in Section 9.2.2, restarting can be effective even for a deterministic
algorithm when other features such as learned clauses naturally guide the deterministic search
process in a different direction after the restart.

formulas, such as Horn, 2CNF, or renamable Horn (RHorn). Nishimura, Ragde, and
Szeider introduced the notion of so-called “deletion” backdoors with respect to the
syntactic tractable classes Horn and 2CNF, where deleting all occurrences of the
backdoor variables from the formula results in a subformula that is 2CNF or Horn,
respectively. This differs from the original notion of a strong backdoor set, where one
needs to consider all possible value assignments to the backdoor variables. Nishimura,
Ragde, and Szeider showed that deletion backdoor sets w.r.t. Horn and 2CNF can be
found efficiently and that deletion backdoors and strong backdoors w.r.t. Horn and 2CNF
are in fact equivalent. These positive formal results have motivated work on backdoors
w.r.t. the tractable class of RHorn formulas, which is a strict superset of the class of all
Horn formulas. First, several heuristic approaches for finding small deletion RHorn-
backdoors were proposed. Later, Razgon and O’Sullivan showed formally that the
existence of a deletion RHorn-backdoor of a fixed size can be decided in polynomial
time.

Theoretically, we showed that the usefulness of deletion RHorn-backdoors is limited—
they can be exponentially larger than the smallest strong RHorn-backdoors. Although
backdoors w.r.t. the syntactic tractable classes 2CNF, Horn, and RHorn have been the
subject of numerous theoretical papers showing some positive complexity results,
empirical evidence that real-world problems in fact have small backdoors w.r.t. these
classes is lacking. We provided integer programming encodings for finding the smallest
deletion Horn- and RHorn-backdoors and empirically evaluate the size of the small- est
deletion backdoors for these classes. Our results on a set of benchmarks show that the
smallest deletion backdoors with respect to these well-understood tractable classes are
consistently considerably larger than strong backdoors with respect to DPLL sub- solvers
such as unit propagation and “probing” (also known as the failed-literal rule). For
example, on a set of graph-coloring instances, probing results in backdoors of size less
than 0.33% of the total number of variables, while the smallest deletion Horn- backdoors
contain 66.67% of the variables. Our formal and empirical findings highlight the tradeoff
between the favorable complexity of finding deletion 2CNF-, Horn-, and RHorn-
backdoors and the large size of the smallest such backdoors in practice.

One key property of polynomial-time algorithmic sub-solvers employed by state-of- the-
art SAT solvers is the detection of trivially inconsistent formulas, that is, formulas that
contain an empty clause. This property is not considered for tractable classes such as
2CNF, Horn and RHorn. To address this issue, we defined the larger tractable class
2CNF{} as the class of formulas that includes all 2CNF formulas as well as all formulas
that contain an empty clause, and we defined the tractable classes Horn{} and RHorn{}
similarly. Accounting for the presence of an empty clause may seem like an incon-
sequential feature for a tractable class or a polynomial-time sub-solver underlying a
backdoor set. However, we showed that including empty-clause detection can
dramatically reduce the size of the resulting backdoor sets, albeit at the cost of increasing
the worst-case complexity of backdoor detection beyond the “within NP” results known
for the pure classes 2CNF, Horn, and RHorn. More precisely, we proved that deciding
whether a given formula has a strong 2CNF{}-, Horn{}-, or RHorn{}-backdoor of fixed
size k is both NP- and coNP-hard, and therefore strictly harder than NP, assuming NP ̸=
coNP. However in terms of backdoor size, we showed that there exist families of

formulas for which considering the tractable classes 2CNF{}, Horn{}, and RHorn{}
leads to arbitrarily smaller backdoors than backdoors w.r.t. the pure 2CNF, Horn, and
RHorn classes, respectively. In addition, empirically we found that in certain graph-
coloring instances with planted cliques of size 4, while the smallest strong Horn-
backdoor sets involve two-thirds of the variables, the fraction of variables in the smallest
strong back- doors with respect to mere empty-clause detection converges to 0 as the size
of the graph grows. These results again highlight the tradeoff, as a function of the
underlying tractable class, between the size of the smallest backdoor set and the
computational complexity of deciding the existence of a backdoor set of a given size. Our
work characterizing the different variants of backdoor sets, both in size computational
complexity, provides interesting insights into the development of new solution methods,
which exploit structure in real-world instances.

The original definition of a strong backdoor set B captures the fact that a systematic tree
search procedure (such as the DPLL procedure for SAT) restricted to branching only on
variables in B will successfully solve the problem. Furthermore, the tree-search
procedure restricted to branching on the variables in B will succeed independently of the
order in which it explores various parts of the search tree. However, most of the state-of-
the-art DPLL-based SAT solvers, in addition to using sophisticated branching heuristics
and data structures, rely heavily on clause learning, that is, adding new constraints or
“nogoods” every time a conflict is encountered during the tree search. Clause learning is
extremely useful in practice in addition to enabling provably exponentially shorter proofs
of unsatisfiability.

Adding new information as the search progresses has, however, not been considered in
the traditional concept of backdoors. To address this limitation, we formally extended the
concept of backdoors to the context of learning, where the branching order over the
backdoor variables is taken into account and information learned from previous search
branches is used by the sub-solver underlying the backdoor. The extended notion often
leads to much smaller backdoors than the “traditional” ones. In particular, we proved that
the smallest backdoors for SAT that take clause learning into account can be
exponentially smaller than traditional backdoors that are oblivious to this solver feature.
We presented empirical results showing that the added power of “learning-sensitive
backdoors” is observable in practice by comparing backdoor sizes with and without
clause learning for a set of real-world problems.

Historically, there have been many similarities between research on combinatorial
decision problems—in particular, Boolean satisfiability (SAT) – and research on
combinatorial optimization problems – in particular, mixed-integer linear programming
(MILP). These similarities suggest that concepts that have been used successfully in one
realm can perhaps be extended to the other realm and lead to new insights. We
investigated this from the angle of applying ideas from SAT to MILP. We extended the
concept of backdoor sets to optimization problems, which raises interesting new issues
not addressed by earlier work on backdoor sets for satisfiability. We introduced “weak
optimality backdoors” for finding optimal solutions and “optimality-proof backdoors” for
proving optimality. Similarly to clause learning in satisfiability search methods, effective
optimization algorithms often involve adding new information such as cuts and tightened

bounds as the search progresses. Therefore, we also introduced “learning-sensitive”
backdoors for optimization.

We provided the first experimental results showing that small backdoor sets exist for
benchmark instances of mixed-integer linear programming optimization problems, and
found that such instances often have backdoors involving fewer than 5% of the discrete
variables. In addition, we demonstrated that studying backdoor distributions – capturing
the probability that a random subset of the set of all the variables is a backdoor set as a
function of the size of the subset – gives insight into search behavior. One prefers a
backdoor distribution where subsets of small size have high probability of serving as
backdoor sets. We provided empirical evidence that, for a given problem, the quality of
the distribution of weak optimality backdoors relative to that of optimality-proof
backdoors aligns roughly with the quality of the runtime distribution when finding an
optimal solution, relative to the quality of the runtime distribution when proving
optimality. Finally, we also designed a simple heuristic for selecting backdoor variables
based on information provided by linear programming relaxations and showed that it can
be used effectively when searching for small backdoors.

5. Combinatorial Optimization for Over-Constrained Problems

(See [12 and 13] for a detailed description of this work and background literature.)	

We have proposed a new hybrid strategy for optimizing over-constrained discrete
combinatorial problems, where simultaneously satisfying all constraints is impossible and
the goal is to find a value assignment to variables that satisfies as many constraints as
possible. In the context of SAT, this is referred to as the Maximum Satisfiability or the
MaxSAT problem. The proposed method combines the complementary strength of local
search and systematic search, bringing the best of both worlds in a way that is ideal for
multi-core architectures.

Combining local and systematic search methods in a fruitful way has been a challenge,
with limited success so far. The main bottleneck has been the nature and cost of
information exchange between the solvers. Key design decisions include: what kind of
information to communicate (lightweight or heavyweight), how to communicate it
(message passing and synchronization or shared memory), how to use the communicated
information (strict guidance or soft guidance), etc. Hybrid solvers are often designed so
that one solver waits for the other to finish during various stages of the search, thereby
reducing the overall efficiency.

Our proposed technique, based on shared memory architecture, enables continuous
information exchange between two constraint solvers without slowing down either of the
two. The main search effort here is driven by a local search algorithm, which is loosely
coupled with and guided by a systematic search algorithm. Such a hybrid search strategy
is surprisingly effective, leading to substantially better quality solutions to many
challenging MaxSAT instances than what the current best exact or heuristic methods
yield, and it often achieves this within seconds. This hybrid approach is naturally best
suited to MaxSAT instances for which proving unsatisfiability is already hard; otherwise

the systematic solver finishes a little too early and the method falls back to pure local
search. Experiments on a large suite of hard, infeasible, industrial 'real-world' instances
from the SAT Race 2008 competition have revealed a unique search behavior of the
hybrid approach, and surprisingly good results by the solver, called MiniWalk, on nearly
all of the instances considered. Unlike usual local search methods, which slowly but often
uniformly move closer towards a solution with some noise, the hybrid method appears to
stay fairly far from solutions most of the time during the search but every once in a while
makes very steep descents towards a solution, presumably guided by the new search
space areas that the coupled systematic search has moved to. Such a search behavior has
not been observed before for local search methods.

We have also explored a complementary direction (presented at the SAT-09 conference),
where the main search effort for an optimal solution is guided by a 'relaxed' systematic
solution finder, and the final candidate solution is further improved in quality using local
search. Systematic search solvers typically work using a branch-and-backtrack scheme –
fixing values of variables one at a time, testing whether a contradiction is detected by
constraint propagation, and if so, backtracking to flip the value of the nearest conflicting
variable.

Constraint propagation and conflict analysis schemes, such as unit propagation and first
unique implication point, are key to the success and scalability of Boolean satisfiability
solvers. However, these techniques are not logically sound for MaxSAT style
optimization problems. The team has proposed a relaxation of the systematic search
paradigm as a heuristic method to find very good quality (though not necessarily optimal)
solutions, which are then improved further using local search. This relaxation brings the
power of constraint propagation and conflict analysis to MaxSAT solvers, as a heuristic
strategy, while extending the solver to tolerate a small pre-specified number of conflicts.
The resulting solver, called RelaxedMinisat, is the only (MaxSAT) solver capable of
identifying a single bottleneck constraint in all but one instance in a test suite consisting
of all unsatisfiable SAT Race 2008 industrial instances.

6. Multiagent gaussian inference for dynamic processes

(See [2 and 4] for a detailed description of this work and background literature.)	

Distributed inference tasks are becoming more and more important as myriads of tiny
inexpensive sensing devices are being deployed, such as in phones and building
materials. Problems of this type occur in a variety of different applications, ranging from
multi-robot systems to wireless sensor networks, and include tracking, environmental and
habitat monitoring, smart buildings control and surveillance activities. Despite the
application specific differences, many of these inference problems can be modeled as a
network of sensing devices that can perform local computations and communicate with
other nodes, collaborating to produce global information from individual local data.

In many of the settings mentioned, a centralized solution, in which a single computational
node receives and processes all the information available, is either not feasible due to
communication and energy restrictions or not desirable because it introduces a single

point of failure and additional delays. Therefore there is a need for distributed solutions
where inference is performed locally at each node on the basis of information that is
retrieved both locally and by communication with neighboring nodes.

The focus of our work concerning this topic has been on the general problem of Bayesian
estimation, where a probability model is assumed to be known and one is interested in
computing the posterior distribution of a collection of hidden variables (“the state”),
given the evidence collected by a network of sensing devices. In particular, we focused
on dynamic scenarios where the state of the world is changing over time.

An example of such a problem is tracking, where the position (or its probability
distribution) of an object moving in a sensor field needs to be estimated on the basis of
the noisy measurements collected by a network of sensing devices.

The main contribution of our work is a new framework to study distributed estimation
problems in dynamic settings based on graphical models. Our approach generalizes the
derivation of the Kalman filter in terms of Belief Propagation to a distributed setting.
Using our framework, we obtained novel distributed estimation algorithms based on
message passing techniques where each node is able to locally elaborate and fuse the
information it receives before transmitting it again, thus distributing the computational
burden and also reducing the use of communication resources.

We evaluated our solution on a tracking application where the goal is to estimate the
position of a moving target. We showed in simulation that our method outperforms the
other state of the art techniques in terms of estimation error on a general class of
problems, even in presence of data loss. Moreover, we showed that our solution is close
to the theoretical optimum that is achievable in the presence of communication latencies.

7. Summary

This research effort focused on three core research challenges: (1) How to explain the gap
between formal analysis and practical performance for combinatorial search; (2) How to
characterize and capture hidden tractable structure in real-world problems; and, (3) How
to further boost combinatorial search methods for real-world problems. Predicting the
runtime of combinatorial search methods is a notoriously hard problem due to
tremendous variations in runtime observed when solving practical problem instances. We
developed a series of advanced formal models for predicting the runtime of combinatorial
search methods. We introduced different models of runtime distributions of search
methods capturing exponential and power law (heavy-tailed) regimes for both complete
and incomplete randomized search methods, together with a generative model that
generates search trees with any pre-defined degree of heavy-tailedness. In order to better
understand and model solution spaces of combinatorial problems, we also developed new
methods for the efficient computation of the number solution clusters and their marginal
distributions. These methods can effectively handle practical problem instances with tens
of thousands of variables, containing solution clusters with sizes ranging over many

orders of magnitude. Reasoning based on such clusters has been the key component of
highly successful combinatorial search methods proposed recently. We extended the
notion of “backdoor sets,” --- a measure that characterizes hidden problem structure --- to
encompass combinatorial optimization problems as well as learning during search,
thereby providing novel insights into the connection between hidden structure of
optimization problems and the surprising efficiency of today’s optimization engines. We
also analyzed probabilistic reasoning techniques based on message passing, namely belief
propagation and survey propagation, in the context of combinatorial problems in the
Boolean satisfiability domain, resulting in the first detailed study of the evolution of these
search methods over time as well as the utilization of these techniques to provide
statistical estimates on key properties of the solution space. In addition we studied the
problem of computing the density of states of a Boolean formula, which is a
generalization of Satisfiability Testing, MAX-SAT, and model counting, and developed a
novel Markov Chain Monte Carlo sampling strategy, inspired by a flat histogram method
from statistical physics. The new sampling method provides novel insights into
combinatorial search spaces that lie far beyond the reach of previous techniques. We also
formulated multi-agent inference problems in dynamic environments into the framework
of message passing algorithms and graphical models, generalizing to the distributed case
of the Kalman filter. We proposed a new hybrid strategy for optimizing the MaxSAT
problem, combining the complementary strength of local search and systematic search,
bringing the best of both worlds in a way that is ideal for current multi-core architectures.

References

We list here archival publications that describe the research supported by this grant. Note
that refereed conference proceedings are the preferred academic outlet in computer
science.

1. Stefano Ermon, Carla Gomes, and Bart Selman. A Flat Histogram Method for
Computing the Density of States of Combinatorial Problems. Proc. 22nd
International Joint Conference on Artificial Intelligence (IJCAI), July 2011.

2. Stefano Ermon, Carla Gomes, and Bart Selman. A Message Passing Approach to
Multiagent Gaussian Inference for Dynamic Processes. Proc. 10th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS), May 2011.

3. Ermon, Stefano; Gomes, Carla; and Selman, Bart. Computing the Density of States of
Boolean Formulas. Proc. of the 16th International Conference on Principles and
Practice of Constraint Programming (CP-10), 2010. (Best student paper award.)

4. Stefano Ermon, Carla Gomes, and Bart Selman. Collaborative Multiagent Gaussian
Inference in a Dynamic Environment Using Belief Propagation. Proc. 9th
International Conference on Autonomous Agents and Multiagent Systems (AAMAS),
2010.

5. Lukas Kroc, Ashish Sabharwal, Bart Selman. An Empirical Study of Optimal Noise

and Runtime Distributions in Local Search. Proc. of the 13th International
Conference on Theory and Applications of Satisfiability Testing, (SAT-2010) LNCS
volume 6175, pp 346-351, Edinburgh, UK, July 2010.

6. Ahmadizadeh, Kiyan; Dilkina, Bistra; Gomes, Carla; and Sabharwal, Ashish. An
empirical study of optimization for maximizing diffusion in networks. Proc. of the
16th International Conference on Principles and Practice of Constraint
Programming (CP-10), 2010.

7. Sheldon, Daniel; Dilkina, Bistra; Elmachtoub, Adam; Finseth, Ryan; Sabharwal,

Ashish; Conrad, Jon; Gomes, Carla; Shmoys, David; Allen, Will; Amundsen, Ole;
and Vaughan, William. Maximizing Spread of Cascades Using Network Design.
Proc. of the 26th Conference on Uncertainty in Artificial Intelligence (UAI-10), 2010.

8. Ansotegui, Carlos; Bejar, Ramon; Fernandez, Cesar; Gomes, Carla; and Mateu,
Carles. Generating Highly Balanced Sudoku Problems as Hard Problems. Journal of
Heuristics, Volume 16, 2010.

9. Carvalho, Alda; Crato, Nuno; and Gomes, Carla. A generative power-law search tree
model. Computer and Operations Research, Volume 36, 2376–2386, 2009.

10. Guo, Yunsong and Gomes, Carla. Learning Optimal Subsets with Implicit User
Preferences. Proc. of the 21st International Joint Conference on Artificial Intelligence
(IJCAI-09), 2009.

11. Guo, Yunsong and Gomes, Carla. Ranking structured documents: a large margin
based approach for patent prior art search. Proc.of the 21st International Joint
Conference on Artificial Intelligence (IJCAI-09), 2009.

12. Kroc, Lucas; Sabharwal, Ashish; Selman, Bart; and Gomes, Carla. Integrating
Systematic and Local Search Paradigms. Proc. of the 21st International Joint
Conference on Artificial Intelligence (IJCAI-09), 2009.

13. Lukas Kroc, Ashish Sabharwal, Bart Selman. SAT-09. Relaxed DPLL Search for

MaxSAT. Proc. 12th International Conference on Theory and Applications of
Satisfiability Testing, LNCS volume 5584, pp 447-452, Swansea, Wales, U.K., June
2009.

14. Dilkina, Bistra; Gomes, Carla; and Sabharwal, Ashish. Backdoors in the Context of
Learning. Proc. of the 12th International Conference on Theory and Applications of
Satisfiability Testing (SAT-09), 2009.

15. Dilkina, Bistra; Gomes, Carla; Malitski, Yuri; Sabharwal, Ashish; and Sellmann,
Meinolf. Backdoors to Combinatorial Optimization: Feasibility and Optimality. Proc.
of the 6th International Conference on Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems (CPAIOR-09),
2009.

16. Lukas Kroc, Ashish Sabharwal, Bart Selman. Counting Solution Clusters in Graph

Coloring Problems Using Belief Propagation. Proc. of the 22nd Annual Conference
on Neural Information Processing Systems (NIPS-08), pp 873-880, Vancouver, BC,
Canada, Dec 2008.

	

	0196.pdf
	RSl TR# BRIDGING THE GAP BETWEEN THEORY AND PRACTICE - STRUCTURE AND RANDOMIZATION IN LARGE SCALE COMBINATORIAL SEARCH FA9550-08-1-0196.pdf
	FA9550-08-1-0196%20-%20SF298[1].pdf
	FA9550-08-1-0196.pdf

